15 research outputs found

    Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium.

    Get PDF
    Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P < 0.0001), lower modularity (P < 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders

    Lateralisation abnormalities in obsessive-compulsive disorder: a line bisection study

    No full text
    Objective Asymmetry in brain structure and function is implicated in the pathogenesis of psychiatric disorders. Although right hemisphere abnormality has been documented in obsessive-compulsive disorder (OCD), cerebral asymmetry is rarely examined. Therefore, in this study, we examined anomalous cerebral asymmetry in OCD patients using the line bisection task. Methods A total of 30 patients with OCD and 30 matched healthy controls were examined using a reliable and valid two-hand line bisection (LBS) task. The comparative profiles of LBS scores were analysed using analysis of covariance. Results Patients with OCD bisected significantly less number of lines to the left and had significant rightward deviation than controls, indicating right hemisphere dysfunction. The correlations observed in this study suggest that those with impaired laterality had more severe illness at baseline. Conclusions The findings of this study indicate abnormal cerebral lateralisation and right hemisphere dysfunction in OCD patients

    Prevalence and clinical correlates of obsessive-compulsive disorder in schizophrenia

    No full text
    Obsessive compulsive symptoms frequently occur in a substantial proportion of patients with schizophrenia. The term schizoobsessive has been proposed to delineate this subgroup of schizophrenia patients who present with obsessive compulsive symptoms/disorder. However, whether this co-occurrence is more than just co-morbidity and represents a distinct subgroup remains controversial. A striking variation is noted across studies examining prevalence of obsessive compulsive symptoms/disorder in schizophrenia patients and their impact on clinical profile of schizophrenia. Hence, in this study, we examined the prevalence of obsessive compulsive symptoms/disorder in a large sample of consecutively hospitalized schizophrenia patients and compared the clinical and functional characteristics of schizophrenia patients with and without obsessive compulsive symptoms/disorder. We evaluated 200 consecutive subjects with the DSM-IV diagnosis of schizophrenia using the Structured Clinical Interview for DSM-IV Axis I disorders, Positive and Negative Syndrome Scale, Yale Brown Obsessive Compulsive Scale, Brown Assessment of Beliefs Scale, Clinical Global Impression-Severity scale, Global Assessment of Functioning Scale, Family Interview for Genetic Studies and World Health Organization Quality of Life scale. The prevalence of obsessive compulsive symptoms in patients with schizophrenia was 24% (n = 48); 37 of them had obsessive compulsive disorder (OCD) and II had obsessive compulsive symptoms not amounting to a clinical diagnosis of OCD (OCS). Schizophrenia patients with OCS/OCD had an earlier age at onset of schizophrenia symptoms, lower positive symptoms score, higher co-morbidity with Axis II disorders, higher occurrence of OCD in family and better quality of life. Findings of the study indicate a higher prevalence of OCS/OCD in schizophrenia. Schizophrenia patients with and without OCS/OCD have comparable clinical profile with few exceptions. High rates of OCD in first degree relatives suggest possible genetic contributions and differences in neurobiology. Finally, evidence to consider schizoobsessive as a distinct diagnostic entity is inconclusive and warrants further studies. (C) 2014 Elsevier Inc. All rights reserved

    A 5-year course of predominantly obsessive vs. mixed subtypes of obsessive-compulsive disorder

    No full text
    BACKGROUND: Obsessive-compulsive disorder (OCD) is considered a heterogeneous disorder. One of the traditional approaches to subtype OCD is based on the predominance of obsessions, compulsions or both. Some studies suggest that the “predominantly obsessive” subtype of OCD may have poor outcome, whereas few other studies suggest that “mixed” OCD is associated with poor outcome. Therefore, it is not clear if the long-term course of “predominantly obsessive” subjects is different from those with “mixed” OCD. In the establishment of diagnostic validity of psychiatric conditions, differential course is an important validating factor. AIM: This study compares the 5-6 year course of the “predominantly obsessive” subtype with that of the “mixed” subtype of OCD with the objective of determining if the course of OCD differs according to subtypes and whether course could be a validating factor for subtyping OCD based on predominance of obsessions, compulsions or both. SETTING AND DESIGN: Tertiary hospital, institutional setting. The study has a retrospective cohort design. MATERIALS AND METHODS: Fifty-four subjects with “predominantly obsessions” and an equal number of the “mixed” subtype of OCD were recruited from the database of a specialty OCD clinic of a major psychiatric hospital. They were followed up after 5-6 years. The Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) checklist and severity rating scale was used for assessing OCD. The course of OCD was determined according to predefined criteria. STATISTICS: The Chi-square/Fisher's exact test and the independent samples “t” test were used to compare categorical and continuous variables, respectively. Correlations were tested using the Pearson's correlation analysis. RESULTS: Thirty-eight “predominantly obsessive” (70%) and 39 “mixed” (72%) OCD subjects could be traced and evaluated. The course of illness was similar in the two subtypes. A majority of the sample (72%) did not have clinical OCD at follow-up. CONCLUSIONS: “Predominantly obsessive” subjects have a course similar to those with “mixed” OCD. Clinically, it is reassuring to know that obsessive subjects do not have an unfavorable course as was suggested by some previous studies. In this sample, course did not validate the subtyping method employed, but it would be premature to conclude that the subtyping method employed is incorrect based on the course alone. Prospective study of the course in larger samples and neurobiological and family-genetic data may help further validation

    Polycystic ovary syndrome in patients on antiepileptic drugs

    No full text
    Objective: This study aims to discuss the prevalence of polycystic ovary (PCO) and Polycystic ovary syndrome (PCOS) in women with epilepsy (WWE) on valproate (VPA), carbamazepine (CBZ), or phenobarbitone (PB), drug naive WWE and women with bipolar affective disorder (BPAD) on VPA. Materials and Methods: This prospective study included 190 women aged 18-45 years, who had epilepsy or BPAD (on VPA), and consented for study. Patients were grouped as Group 1 (n = 40): WWE on VPA, Group 2 (n = 50): WWE on CBZ, Group 3 (n = 50): WWE on PB, Group 4 (n = 30): drug naοve WWE, and Group 5 (n = 20): women with BPAD on VPA. All women were interviewed for medical, menstrual, drug and treatment history, nature of epilepsy, and seizure control. Chi-square test and Fisher′s exact test were done to compare results between the groups. Results: Fifty-two women (52/190; 27.4%) had menstrual disturbances, in which oligomenorrhea was the most common (55.8%). There was a significant difference in the occurrence of PCOS in patients on VPA versus normal population (P = 0.05) and patients on other antiepileptic drugs (AEDs) (P = 0.02). There was, however, no significant difference in the occurrence of PCO between patients on VPA and the untreated epileptic women. VPA group (Epilepsy + BPAD) had a significantly higher occurrence of obesity than other treatment groups (P = 0.043, OR = 2.11). Conclusions: The study observed significantly higher occurrence of PCO in patients on VPA compared to other AEDs and the normal population. The importance of proper clinical evaluation before initiating VPA is highlighted

    Cutting-edge genetics in obsessive-compulsive disorder

    No full text
    This article reviews recent advances in the genetics of obsessive-compulsive disorder (OCD). We cover work on the following: genome-wide association studies, whole-exome sequencing studies, copy number variation studies, gene expression, polygenic risk scores, gene-environment interaction, experimental animal systems, human cell models, imaging genetics, pharmacogenetics, and studies of endophenotypes. Findings from this work underscore the notion that the genetic architecture of OCD is highly complex and shared with other neuropsychiatric disorders. Also, the latest evidence points to the participation of gene networks involved in synaptic transmission, neurodevelopment, and the immune and inflammatory systems in this disorder. We conclude by highlighting that further study of the genetic architecture of OCD, a great part of which remains to be elucidated, could benefit the development of diagnostic and therapeutic approaches based on the biological basis of the disorder. Studies to date revealed that OCD is not a simple homogeneous entity, but rather that the underlying biological pathways are variable and heterogenous. We can expect that translation from bench to bedside, through continuous effort and collaborative work, will ultimately transform our understanding of what causes OCD and thus how best to treat it
    corecore